Studien zum Raman-Effekt.

Mitteilung 166: Paraffine I.

Von

E. Herz, L. Kahovec und J. Wagner.

275. Mitteilung aus dem Physikalischen Institut der Techn. Hochschule Graz.

Mit 1 Abbildung.

(Eingelangt am 14. Dez. 1944. Vorgelegt in der Sitzung am 14. Dez. 1944.)

Seit der ersten umfassenden Grazer Studie¹ über die Ramanspektren unverzweigter Paraffine, die sich auf Ketten mit 3 bis 12 C-Atomen erstreckte, ist eine Anzahl von Beobachtungen mit verbesserten Mitteln über das gleiche Thema erschienen, alle mit dem Zweck, die experimentellen Grundlagen für die spektrale Analyse von Kohlenwasserstoffgemischen zu schaffen. Für Ketten mit 5 und mehr C-Atomen liegen, soweit uns bekannt, folgende Arbeiten vor: Bonino-Manzoni² (C₆, C₇, C₈), Rosenbaum-Grosse-Jakobson³ (C₆, C₇), Goubeau-Schneider⁴ (C₁₂), Rosenbaum⁵ (C₈, C₁₀, C₁₆, C₂₀), Bashulin⁶ und Mitarbeiter (C₅, C₆, C₇, C₈).

Da aber für das Erreichen des angestrebten Zweckes die Kenntnis der Frequenz- und Intensitätsverteilung zwar notwendig, aber doch insofern nicht ganz hinreichend ist, als das Wissen um den Sinn und die Bedeutung der bei der Analyse verwendeten "letzten Linien" kaum entbehrlich erscheint, wollten wir für *diesen* Zweck die bisher ausständigen

¹ K. W. F. Kohlrausch und F. Köppl, Z. physik. Chem., Abt. B 26, 209 (1934).

² G. B. Bonino und R. Manzoni-Ansidei, Proc. Indian Acad. Sci. 8, 405 (1938).

³ E. J. Rosenbaum, A. V. Grosse und H. F. Jakobson, J. Amer. chem. Soc. **61**, 689 (1939).

⁴ J. Goubeau und V. v. Schneider, Z. angew. Chem. 33, 531 (1940).

⁵ E. J. Rosenbaum, J. chem. Physics 9, 295 (1941).

⁶ P. A. Bashulin, A. F. Plate, O. P. Ssolowowa und B. A. Kasanski, Bull. Acad. Sci. USSR 1941, 13.

	Coblentz ⁷ Ur (g)	$Bhagavantam^{8}$	Murray- Andrews ⁹	Kohlrausch- Köppl ¹	Ananthakrishnan ¹⁰ 0	Mizushin Naka (flüssiz)	na-Morino- mura ¹¹ (fest)		Н. К. W.	ø
-1-						(Growners)	1			,
	0		ļ	222 (0?)	1	1			1	
	0	320 (0)	338 (0)	319 (1/°)	319 ⁽¹ /°) p	325(2)		321 (0)	8	\mathbf{p}
	0	430(6)	428(3)	426 (5)	430(5) p	432 (7)	425 (4)	429 (5)	k. t. + e	0.55
-	689 (3)				- _					
	750 (2)			1	ļ	1			1	
-		793 (4)	787 (9)	785 (2)	786 (3) n	789 (4)		790 (4)	k t a	0.41
	11 660	(I) 001			(a) a0a a (a) a0a			000 (E)	L, 1, 0	
	(#) 000	834(10)	832 (6)	833 (8)	070 (0) 070 0 (0) 070	835 (10)	837 (6)	630 (0) 838 (6)	6, c	0, 22
	(1) 600	`				_	101 100	000 (0) 002 (0)	1 0 6 V	
	(1) 780				- 10,020			(10) 600	e:	
	951 (4)	960 (3)	621 (T)	952 (I)	953 (20) dl	0 956 (30)	1	958 (¹ /2)	k, e	
	1004(3)	983(3)	980(2)	978(1)	979 (2s) p	981 (3)		981(1)	k, e	0,49
	I	1060(6)	1058(3)	1057 (4b)	1056 (4s) p	1058(6)	1059(5)	1056(5)	k, i, e	0,42
	1042(1)	1067 (0)	1070 (0)	1071 (1/2)	1070 (2b) p	1077 (2)		1075 (0)	k, e	
	1132 (4)	1146(4)	1149(8)	1145(2)	1144 (3s) p	1148(3)	1151 (4)	1148(1)	k. e	
_		`		1	• .	1167 (0)		-	.]	
	1205 (4)		ļ							
		1				1282 (2)				
	1281 (2)	1303 (3b)	1293 (1b)	1302 (2b)	$1302 (2b) d_{\rm F}$	1304 (3)	1300 (4)	1304 (1)	9	0,31
	(o) oo, 1			1,017,			1442 (3)			
	J 1432 (8)	1453 (4)	1450 (30)	1450 (7 80)	1445 (1080) df	1455 (780	(1460(2))	1450 (680)	<i>k</i> , <i>e</i>	0,67
		2665 (1)	2670 (0)	$2663 (1/_2)$	$2663 (1/_2)$ p	2667 (2)		$2667 (1/_2)$	k	
	ļ	2706(1)	2702(0)	2705 (2)	2701 (1) p	2703 (3)	2703(1)	$2706 (1/_{2})$	k	
		2736 (2)	2739 (1)	2733 (5b)	2730 (4) p	2733 (4)	2725 (1)	2736 (4)	q, p, k	d
]	2864 (4)	2864(5)	2857 (10)	2858 (10) p	2860 (10)	2853 (8)	2862 (10)	k, i, e	
_		2879 (8)	2879 (10)	2875 (15)	2879 (15) p	2880 (10)		2878 (12)	k, i, e	0,39
	:						2896 (10)	2900 (5)	q, k	
		§2910-(3)	2912 (3)	2908 (8)	d (99) 0167	2909 (96)	2912(4)	2914(8)	q, o, k, i, e)	100
) anaa /o/	0000 (8)	10/ 1100	121	0010/000	1017 2000	(2931 (1)	2936 (11)	q, o, k, i, e f	0,31
	(2727 (2)	2938 (0)	2941 (8)	2830 (10)	za40 (12) b	(01) 7582	2950(4)	2942(8)	\overline{q}, p, o, k	
	2964	2964(3)	2963 (3)	2966(9)	$2967 (10) d_{\rm F}$	2964 (9b)	2965 (9)	2962 (7)	q, p, k, i	dp

Tabelle I. n-Butan.

E. Herz, L. Kahovec und J. Wagner: Studien zum Raman-Effekt. 101

		1							
C_4	2733(4)		—	2878(12)	2898(7)	2913(6)	2933(6)	2946(6)	2964(8)
C_5	2731(1)	2852(5)	2863(5)	2876(8)	2899(4)	2912(5)	2935(7)	2941(6)	2964(7)
C_6	2732(4)	2852(4)	2863(9)	2876(11)	2900(7)	2916(7b)	2938(1)		2963(10)
C_7	2732(3b)	2851(9)	2861(9)	2874(10)	2904(4)	2918(4)	2937(9)	[']	2962(8)
C_8	2732(2b)	2852(6)	2861 (7)	2876(10)	2901(2)	2917(2)	2938(10)		2963 (10)
Č,	2732(1)	2850 (10)	2860(7)	2876(9)	2900(8)		2938(8)		2962(7)

Tabelle 2. CH-Valenzfrequenzen.

Polarisationsmessungen nachholen. Zwar waren wir uns im Hinblick auf die Liniendichte und das schlechte Streuvermögen der Paraffine der zu gewärtigenden und kaum vermeidbaren Unzulänglichkeit der Ergebnisse bewußt, doch sind auch unvollständige Aussagen besser als gar keine. Wir verwendeten fast durchwegs die seinerzeit¹ synthetisch hergestellten Stoffe und benutzten die neuerlich zur Spektroskopierung vorbereiteten

Anhang.

1. *n-Butan*. Herstellung durch Zersetzen der aus gereinigtem n-Butylchlorid hergestellten Grignard-Verbindung mit H₂O. Das Butan wurde durch konz. H₂SO₄ geleitet und in einer gekühlten Vorlage kondensiert. Zweimalige Destillation. Kp.₇₆₀ 0 bis 3° (Lit. Kp. —2 bis + 10°; + 0,5°). Zuletzt in das nachher abgeschmolzene Ramanrohr destilliert. Aufnahmen mit großer Dispersion: A 298, m. F., t = 106; A 299, o. F., t = 68; Ugd. s. bis m., Sp. m.; n = 58. — Ergebnis vgl. Text, Tab. 1; ϱ -Bestimmung in Tab. 3.

							Einzelm	essungen	
Nr.	_			MILLEI	werte	Pl. 785	t = 79	Pl. 786	t == 85
	Δν	i_{π}	iσ	Q	J	Q	J	e	J
2	$321 (1^{1}/_{2})$	0	0						
3	429 (5)	7	1	0,55	19	0,55	18	(0,72)	19
6	790 (4)	4	0	0,41	10	0,44	10	0,38	10
$\frac{7}{8}$	830 (6) 838 (6)	} 10	4	0,22	35	0,26	36	0,18	33
9	885 (0)	0?	0?						
11	981 (1)	4	2	0,49	13	0,49	13	0,49	12
12	1056 (5)	7	$4^{1}/_{2}$	0,42	21	0,40	20	0,43	22
18	1304 (1)	5	3	0,31	17	0,30	13	0,31	20
19, 20	1450 (6b)	10	$8^{1}/_{2}$	0,68	32	0,68	32	(0, 52)	32
$egin{array}{c} 24 \ 25 \end{array}$	$2862 (10) \\ 2878 (12)$	} 7	1	р				_	
$\begin{array}{c} 27\\ 28 \end{array}$	2914 (8) 2936 (11)	} 4	1/2	р					
29	2942 (8)								

Tabelle 3. n-Butan (ρ -Messung).

2. *n*-Pentan. Köppls¹ Präparat, frisch destilliert. Aufnahme: A 327, m. F., t = 98; A 328, o. F., t = 72. Ugd. s., Sp. m., n = 51. Ergebnisse in Tabelle 4, verglichen mit jenen von Kohlrausch-Köppl¹ (mit Normaldispersion) und Bashulin;⁶ ϱ -Bestimmung in Tab. 5. Proben zugleich zu Aufnahmen mit großer Dispersion ($Zei\beta$, Dreiprismenspektrograph, längstbrennweitige Kamera, Länge des Spektrums von Hgk bis Hgd 9,9 cm). Es schien uns dies angebracht, da über die Verläßlichkeit einiger der ausländischen Beobachter keinerlei sonstige Anhaltspunkte vorliegen. Gemessen wurde an den normalen Ketten mit 4 bis 9 C-Atomen. Weitere Beobachtungen, insbesondere an verzweigten Ketten, sollen folgen.

Die Ergebnisse sind zahlenmäßig im Anhang zusammengestellt und dort auch, abgesehen von dem im Text behandelten einfachsten Fall des Butans, mit jenen der anderen Autoren verglichen; die erzielte, mehr oder weniger gute Übereinstimmung gibt einen Begriff von der derzeit erreichten Genauigkeit und Vollständigkeit der Spektren dieser organischen Grundstoffe.

Nr.	К. К. ¹	B. P. S. K. ²	H. K. W.
1	334 (2 b)	328 (2, dp)	$334 (1^{1}/_{\circ}) e$
$\overline{2}$		364(0)	
3		377(0)	
4	399 (6)	401 (8)	398 (4) k, e
5		469(2)	464 (1/2) e
6	<u> </u>	739 (0)	
7	762 (3)	766 (4)	764 (2) k, e
8	795 (0?)		710 (0?) e
9	837 (5)	840 (7)	840 (4) k , e
10	862 (4)	867 (6)	866 (3) k, e
11	900 (2)	910 (1)	902 $(1/2)$ e
12		993 (0 b)	988 (0) e
13	1022 (4 2)	1024 (5)	1024 (2) k, e
14	1033 (4 0)	1036 (5)	1036 (2) k, e
15	1073 (5 b)	1073 (5)	1071 (2) k, e
16	1138 (3)	1144 (4)	1142 (2) k, e
17		1170 (0?)	1170 (0?) e
18		1269 (0 b)	1262 (0?) k
19	1299 (5)	1303 (6)	1299 (2) k, e
20	1438 (6 b)	1442 (10)	1438 (4) k, e
21	1463 (6 b)	1462 (10)	1455 (4) k, e
22	·	2668 (0 b)	
23	9799 (9)	2716 (0 b)	2713 (0?) k
24		2734 (1)	2728 (1) k
25	2851 (3)	2853 (13)	2851 (5) q, k
26	2873 (12)	2864 (18)	2862 (5) q, k
27	2010 (12)	2879 (31)	2874 (8) k
28	2904 (8)	2900 (19)	2898 (4) q, k
29		2915 (19)	2910 (5) q, k
30	2935 (10 b)	2938(20)	2935 (7) q, p, o, k, e
31			2941 (6) q, k, i
32	2962 (3)	2967 (14)	2962 (7) q, p, k, i

Tabelle 4. n-Pentan.

Diskussion der Ergebnisse.

1. n-Butan. In Tabelle 1 sind die bisher vorliegenden brauchbaren Messungen des Schwingungsspektrums vereinigt. Von Coblentz⁷ wurde die ultrarote Absorption der gasförmigen, von Bhagavantam,⁸ Murray-Andrews,⁹ Kohlrausch-Köppl,¹ Ananthakrishnan,¹⁰ Mizushima-Morino-Nakamura¹¹ das Ramanspektrum der verflüssigten, von den letztgenannten auch jenes der festen Substanzen bestimmt. Von Ananthakrishnan wurden Schätzungen der Polarisationsverhältnisse mitgeteilt. Die eigenen Beobachtungen mit großer Dispersion sowie die ϱ -Messungen (vgl. auch Tabelle 3 des Anhanges) sind in der letzten Spalte angegeben.

Kohlrausch¹² hat schon vor 12 Jahren darauf verwiesen, daß man zur Erklärung der großen Linienzahl im Bereich unter 1100 cm⁻¹ mit den

					,		Einzelm	essungen	
				Mitter	werte	Pl. 798,	t = 88	Pl. 801	, t = 93
	Δν	in	ia	Q	J	Q	J	ę	J
1	994 (1/)								
· 1 1	$334 \left(\frac{1}{2}\right)$	1	1	p	94		24	0 53	24
5	$468 (1/_{o})$		00	0.96	14	0.93	13	0.99	15
7	764(2)	4	1/0	0.30	10	p		0.30	10
9	840 (4)	5	Ő	0,44	21	0,52	22	0,38	19
10	866 (3)	4	$1^{1}/_{2}$	0,47	18	0,47	18	р	
11	902 (1/2)	2	$1^{1/2}$	р		p		р	
13, 14	1028 (2, dp)	6		0,62	15	0,62	15	\mathbf{p}	
15	1071 (2)	5	4	0,98	19	1,10	19	0,86	19
16	1142 (2)	6	1	0,56	13	0,55	13	0,58	14
19	1299(2)	7	6	0,85	19	0,93	20	0,76	18
20	1438 (4)	10		0.06	49	0.00	45	0.04	49
21	1455(4)	J 10	9	0,80	40	0,00	40	0,84	42
26, 27	2874 (8)	7	¹ / ₂	.p					
30, 31	2935 (7)	4	$\frac{1}{2}$	р] —		- 1	

Tabelle 5. n-Pentan (*p*-Messung).

3. n-Hexan. Köppls¹ Präparat. Aufnahme: A 305, m. F., t = 111; A 307, m. F., t = 122; A 306, o. F., t = 70; Ugd. ms., Sp. m., n = 62. Ergebnisse in Tabelle 6, verglichen mit jenen von Kohlrausch-Köppl,¹ Bonino-Manzoni,² Rosenbaum-Grosse-Jakobson,³ Bashulin;⁶ ϱ -Bestimmung in Tab. 7.

⁷ W. W. Coblentz, Carnegie Inst. Washington 1905.

⁸ S. Bhagavantam, Indian J. Physics 6, 595 (1932).

⁹ J. W. Murray und D. H. Andrews, J. chem. Physics 1, 406 (1933).

¹⁰ R. Ananthakrishnan, Proc. Indian Acad. Sci. 5, 285 (1937).

¹¹ S. Mizushima, I. Morino und S. Nakamura, Sci. Pap. Inst. physic. chem. Res. 37, 205 (1940).

¹² K. W. F. Kohlrausch, Z. physik. Chem., Abt. B 18, 61 (1932); 29, 24 (1935); vgl. Lit. 1.

6 Kettenschwingungen, die eine einzige bestimmte Molekülstruktur des Butans zur Verfügung stellt, nicht auskomme und daß mindestens zwei rotationsisomere Molekülformen angenommen werden müßten. Eine eindrucksvolle Bestätigung dieses Schlusses erbrachten die Beobachtungen der japanischen Autoren, die zeigten, daß beim Übergang zum festen Zustand eine beträchtliche Verringerung der Linienzahl eintritt. Da dabei im tiefen Frequenzgebiet nur polarisierte und optisch-inaktive Linien in geringer Zahl überbleiben, folgt, daß es sich um ein Ausfrieren der offenbar stabileren trans-Form (C₂) handelt. Neben ihr existiert im flüssigen Zustand eine zweite Struktur, die entweder mit ebener (*cis*-Form, C₂) oder nicht-ebener Kette (C₂) gebaut ist. Auswahlregeln und

Nr.	K. K. ¹	B. M. ²	R. G. J. ³	B. P. S. K.6	H. K. W.
1	305 (1/2)	—		305 (1)	
2	1 910 (94)	200 (I) J	313 (1)	317 (1)	313 (1) <i>e</i>
3	$\int 318(20)$	320 (1)	332 (1)	334 (1)	332 (1) <i>e</i>
. 4	365 (3)	366(4)	371 (4)	371 (1)	368 (4) $\pm e$
õ	398 (1)	402 (1)	401 (3)	403(2)	400(3) k, e
6	465 (0)	469 (1)	455 (0?)	457(1)	449 $(1/2)$ e
7	728 (0)	730 (0)			742 (0?) e
8		—	809 (0?)	812 (1)	811 (1) e
9	820~(5b)	830 (2)	824 (3)	826 (4)	824 (4) k, e
10	865 (3)	867 (2)	870 (3)	871 (5)	868 (5) <i>k</i> , e
11	} 804 (6)	895 (2)	892 (4)	893 (7)	890 (5) k, e
12] 094 (0)	055 (2)	899 (4)	901 (7)	898 (5) k, e
13	3 966 (0)	{	953 (0)	956 (0)	949 (00?) e
14	300(0)	- L	974 (0)	978 (0)	$965\ (00?)\ e$
15	1006 (1)	1011 (2)	1005(0)	1007 (1)	1008(1) k, e
16	1034 (3)	1040 (2)	1040 (3)	1040 (4)	1037(5) k, e
17	1062 (0?)	1063 (2)		1065(2)	1063 (1) k, e
18	1075 (3b)	1076 (2)	1080 (3)	1082 (4)	1080(5) k, e
19	1134 (1)	1135(2)	1139(1?)	1140 (4)	1140 (5) k, e
20			—	1168 (1 <i>b</i>)	1166 (0) e
21				1222 (0)	
22		—	—	1283 (0)	
23	1301(5b)	1299 (4)	1305(4)	1305 (7)	1300 (5) k, f, e
24	1441 (4)	1446 (6)	1438~(6)	1440 (9)	1436 (6) k, e
25	1453 (6b)	J 1 1 1 0 (0)	1460~(6)	1460 (9)	1454(7) k, e
26				2669 (0)	
27	2724(3b)	—	2733(1)	2731(1)	2732(4) k
28	2851(10)	2855 (3)	2853(7)	2852 (19)	2848(4) k
29	2874 (12)	2873 (10)	2865(7)	2863 (19)	2862 (9) q, k, i, e
30	(14)		2877 (10)	2877 (24)	2875 (11) q, k, i, e
31	2908 (10)	2910 (8)	2902 (3)	2901 (18)	2897(7) q, k, e
32			2921 (3)	2916 (18)	2910 (7b) q, o, k, i, e
33	2935 (11)	2936 (10)	2940 (10)	2940 (17)	$ 2938 (11) q, p, k, i, e \\ 2938 (11) q, k, i, k, i, e \\ 2938 (11) q, k, i, k, i$
34	2962 (8)	2963 (6)	2964 (8)	2966 (12)	2962 (10) q, p, k, i, e

Tabelle 6. n-Hexan.

Frequenzverteilung ergeben sich für diese drei Möglichkeiten aus der folgenden Zusammenstellung:

Kette	\mathbf{CH}_2	CH_3	C _{2 h}	C _{3 v}	C_2
$\begin{array}{ccc} \omega_1 & \omega_2 & \omega_3 \\ & \omega_6 \end{array}$	$\begin{array}{c} \gamma_1 \ \delta_1 \ \nu_1 \\ \gamma_2 \ \delta_2 \ \nu_2 \end{array}$	$\begin{array}{c} Kn_1 \\ Kn_2 \end{array} \left. \begin{array}{c} \delta_1 & \delta_2 \\ R & \delta_3 \end{array} \right $	$\begin{pmatrix} v_1 & v_2 \\ v_3 \end{pmatrix}$ p, ia v, a	p, a } dp, ia	p, a
$\omega_4 \omega_5$	$\gamma_1^* \delta_1^* v_1^* \ \gamma_2^* \delta_2^* v_2^*$	$\begin{array}{c} Kn_1^* \\ Kn_2^* \end{array} \left\{ \begin{array}{c} \delta_1^* & \delta_2^* \\ R^* & \delta_3^* \end{array} \right\}$	$\left. egin{array}{c} v_1^* v_2^* \\ v_3^* \end{array} ight\} \left. egin{array}{c} v, a \\ dp, ia \end{array} ight.$	dp, a } dp, a }	dp, a

Kn sind Knick-, R sind Rotationsbewegungen der CH₃-Gruppe; durch geschlungene Klammern sind jene verbunden, die miteinander entarten, sofern diese Gruppe die Eigensymmetrie C₃₀ beibehält. Die gesternten Formen unterscheiden sich von den nicht-gesternten nur durch die Phase der beiden schwingenden CH₂- bzw. CH₃-Gruppen. Als Erwartung für die Deformationsfrequenzen kann man, fußend auf Erfahrungen an ähnlichen Verhältnissen, aussprechen:

						1	Einzelm	essungen	
Nr.				Mitter	werte	Pl. 783,	t = 93	Pl. 784,	t = 96
	Δν	i_{π}	ig	Q	J	ę	J	e	J
2	313(1)	} <u>1</u> 1/,	1/.	p?	4	p?	4	p?	4
3	332 (1)) - /2	12	, F.		r.	_	F.	
4	368 (4)	11/	1/。	p?	10	n?	9	p?	12
5	400(3)	J '*	14				ł	1	
8	811 (2)	6	1/2	q	9	α	9	q	9
9	824 (4)				. 14		10		10
10	868 (5)	0	0	р	14	0,68	13	p	10
11	890 (5)	} 7	2	0.49	12	0.47	15	0,50	9
12	898 (5)	,	0		· .			Í	
15		3	0	p	. 0	p		p	6
16	1037 (5)	$4^{1}/_{2}$	0	0.58	10	0,58	12	р	9
18	1080 (5)	5	4	0,86	17	0,87	17	0,85	18
19	1140 (5)	5	2	0,57	13	0,52	13	0,61	14
23	1300 (5)	7	6	0,80	14	0,83	23	0,77	21
24	1436 (6)	156	146	98.0	40	0.00	50	0.94	18
25	1454 (7)	1 100	140	0,00	40	0,00	90	0,04	±0
29	2862 (9)	10.1	<u>`</u> 0					+	
30	2875 (11)	1 100	U	P					
32	2897 (7)	h						1	
33	2910 (7b)	$\left. \right. \left. 6 d \right.$	0	р		— ·		-	
34	2938 (11)								
	1	1		1	1	1 1 1	1	1	1

Tabelle 7. n-Hexan (ϱ -Messungen).

4. *n*-Heptan. Köppels Präparat. Aufnahmen: A 296, m. F., t = 94; A 297, o. F., t = 60; Ugd. ms., Sp. m.; n = 52. Ergebnisse in Tabelle 8, verglichen mit jenen von K. K.,¹ B. M.,² R. G. J.,³ B. P. S. K.;⁶ ϱ -Bestimmung in Tabelle 9. für CH₃:
$$Kn_{1,2}$$
 u. $Kn_{1,2}^* \sim 1000 \rightarrow 1100$; δ_1 u. $\delta_1^* \sim 1300 \rightarrow 1400$; $\delta_{2,3}$ u. $\delta_{2,3}^* \sim 1450$.

-

Die Kettenfrequenzen der trans-Form durch ω_i' von jenen der eisoder nicht-ebenen Form ω_i unterscheidend, wird folgende Zuordnung vorgeschlagen:

				~ ~ ~		
Nr.	<u>К.</u> К. ¹	B. M. ²	R. G. J. ³	B. P. S. K. ⁶	H .]	K. W.
1	<u> </u>		286 (0)	284(0)	<u> </u>	
2	309 (5)	310 (4)	310 (4)	310 (7)	307(5)	e
3		_	355 (1)	358(1)	355 (0)	e
4	394 (2b)	397(2)	394 (1)	395(2b)	395 (2)	e
5			454(0)	449 (0)		
6	490 (0)	487(1)	496 (0)	498(0b)	501(0)	e
7				546(1)		
8	= 9 .2 (0)	ſ	728 (0)		779 (0)	
9	736 (0)	— 1	741 (0)	f 140 (0)	130 (0)	e
10	774 (1b)		781 (1)	780 (2)	773(1b)	e
11	831 (3)	$\int \partial \eta d\eta d\eta d\eta$	836 (1)	836 (4b)	834 (3)	k, e
12	842 (3)	f 831 (1) {	854 (1)	852 (2 <i>b</i>)	853 (2)	k, e
13	000 (4)	000 (0)	887 (3)	888 (1)	901 (5)	k, e
14	900 (4)	898 (2) <u></u>	904(5b)	905 (6)	907 (5)	k, e
15	938 (0)		936 (1)	935 (1)	940 (0)	e
16				948 (1)		<u>^</u>
17			1 apr (0)	961 (1)	j 902 (0)	e
18	·	<u> </u>		999 (0)		
19	1013 (1)		1025(1)	1023 (1)	1021 (1)	e
20	1046 (2)	1040 (2)	1045 (3)	1047 (2)	1045(1)	e
21	1073 (3b)	— ·	1083 (1)	1080~(5b)	1080 (4)	k, e
22	1134 (2b)	1136 (1)	1139 (0)	1138 (4)	1138 (4)	k, e
23	1160 (0)		1160 (0)	1163 (1 <i>b</i>)	1160 (0)	e
24		·	1204 (1)	1205(0)?	<u> </u>	
25			1201 (1)		1242(0)?	e
26	1301 (6b)	1298 (4)	1303 (6)	1304 (4)	1299(6)	k, e
27	1250 (0)		1346 (1)	1344 (0)	· · ·	
28	11998 (0)		1364 (1)	1361 (0)	<u> </u>	
29	1439 (5)	1146 (6)	1438 (8)	1438 (10b)	1435(6)	k, e
30	1459~(6)	11440 (0) [1457 (8)	1458 (10b)	1454~(6)	k, e
31	2720 (3b)		2732 (1)	2733 (2)	2731(3b)	k
32	2853 (12)	2859 (6)	2851 (4)	2854 (23b)	2851 (9)	q, k, e
33	· · · · ·	!	2861 (2)		<u> </u>	
34	2874 (12)	2877 (2)	2876 (4)	2868 (29)	2873 (10)	k, e
35		3011 (1)	2903 (3)	3019(94b)	2906 (4)	q, k
3 6	· · · · · ·	J ^{2811 (4)} (2916 (1)	J 4012(240)	2920 (4)	k, e
37	2932 (12)	2942 (8)	2937 (10)	2937 (18)	2938 (9)	q, p, o, k, e
38	2962 (9)	2965 (6)	2962 (8)	2963 (12)	2960 (8)	q, k, i, e
39	l —				2994 (3)	q, k

Tabelle 8. n-Heptan.

				7644.01	monto		Einzel	werte	
Nr.				MILLER	werve	Pl. 779,	t = 100	Pl. 780	t = 100
	Δ\$	i_{π}	iσ	Q	J	Q	J	ę	J
	l					1			
2	307 (5)	5	$^{1}/_{2}$	\mathbf{p}	28	р	36	р.	19
3	355 (0)	· 1	$^{1}/_{2}$	—			—		
4	395 (2)	2	1	dp	28	dp	28	—	
11	834 (3)	R ah	11/	0.50	19	0.50	91	n	14
12	853 (2)	J 00	1-/2	0,00	10	0,00	21	Р	14
13	905 (5)	l eh	11/	nn	14	l nn	14	m	15
14	907 (6)	1 00	1 / 2	\mathbf{PP}	17	PP	11	\mathbf{PP}	10
19	1021 (1)] 5h	2						
20	1045 (1)]			_				
21	1080 (4)	7	6	0,85	21 -	0,85	22	0,85	21
22	1138 (4)	6	1	0,56	16	0,44	14	0,69	19
26	1299 (6)	8 b	$6^{1/2} b$	0,89	22	0,87	21	0,92	25
29	1435 (6)	15 h	14 6	0.86	48	0.83	46	0.89	50
30	1454 (6)	1 100	110	0,00	10	0,00	10	0,00	00
32	2851 (9)) I							
33	2861 (8)	> 14 b	0	\mathbf{p}					
34	2873 (10)	J				Į			
36	2920 (4)	8	0	n			· · · ·		
37	2938 (9)	J	v	ч	l .				

5. n-Octan. Köppls Präparat. Aufnahmen: A 300, m. F., t = 104; A 301, o. F., t = 61; Ugd. s., Sp. m.; n = 60. Ergebnisse in Tabelle 10, verglichen mit jenen von K. K.,¹ B. M.,² R.,⁵ B. P. S. K.;⁶ ϱ -Bestimmung in Tabelle 11.

$\omega_3 =$	321 (0)	$\omega_{3}'=429$ (5) $\delta_2 = \delta_2^* (CH_2)$	==	790 (4)
$\omega_5 =$?	$\omega_5' = 689$ (ur) $Kn_{1,2} = Kn_{1,2}^*$ (CH ₂)	=	981 (1)
$\omega_6 =$?	$\omega_{6}' = ?$	$\gamma_2 = \gamma_2^* (\mathrm{CH}_2)$		1148 (1)
$\omega_2 =$	830 (6)	$\omega_2' = 838$ ($6) \qquad \gamma_1' = \gamma_1^* (CH_2)$	_ ==	$\delta_1 = \delta_1^* (CH_3) =$
					= 1304 (1)
$\omega_4 =$	958 $(1/2)$	$\omega_4'=892$ ($\text{ur}) \qquad \delta_1 = \delta_1^* (\text{CH}_2)$		$\delta_{2,3} = \delta_{2,3}^* (CH_3) =$
					= 1450 (6sb).

2. Die höheren Homologen. In Abb. 1 wird ein zeichnerischer Überblick über die Ramanspektren der Paraffine im Intervall von 200 bis

Nr.	K. K. ¹	B. M. ²	R.5	B. P. S. K. ⁶	H. K. W.
1	281 (5b)	283 (2)	280 (5 <i>b</i>)	282 (6)	282 (7) $f, \pm e$
2			297(1d)	300 (1 <i>b</i>)	
3	346 (00)		354(1d)	352 (0)	368 (00) e
4			378 (1)	377 (0)	
5			398 (0)	400 (0)	3 96 (00) e
6	420 (0)	—	426(0)	427 (0)	425(0) e
7	502 (00)			507 (0)	
8	725 (0)	—		707 (0)	
9	764 $(1/_2b)$	764 (1/2)	766 (0)	766 (1)	762(0) e
10	810 (2 <i>b</i>)	812 (2)	817~(1b)	813 (2 <i>b</i>)	814 (1) k, e
11			842 (1)	842 (2)	843 (1) k, e
12	861 (3)	852 (1)	862(2)	860 (0)	860 (3) k, e
13		· —	878 (3)	877 (3)	878 (3) k, e
14	889 (4 <i>sb</i>)	898 (3)	895 (4)	895 (4)	895 (5) k, e
15			956 (0)	954(1b)	
16	966 (36)		968 (1)	969 (2)	965(4b) k, e
17			1027(1)	1028(1)	1027(2) e
18	1040 (36)	1053	1046(1)	1044(1)	1045(2) e
19	1074 (5sb)	J 10000 (1062 (2)	1062 (3)	1062(3) k, e
20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1076 (3)	1085 (3)	1085 (4)	1083 (4b) k, e
21	1135 (3)	1136 (2)	1136 (2)	1137 (4)	1134(4) k, e
22	1163 (0?)	1159 (1/2)	1163 (1)	1165(1)	1160(0) e
23	1300 (66)	1301 (6)	1301 (56)	1304 (7)	1298(8) k, e
24			1345 (0)		
25	1372(00)	—	1368 (0)		
26	1446 (9sb)	1446 (6)	1438 (76)	1440 (9)	1436(7) k, e
27) , , ,		1459 (70)	1409 (9)	1457(7) k, e
28		_		2037(0)	
49 20		'	9719 (1)	2070 (0)	
91	9790 (94)	9791 (1)	2712 (1)	9799 (1)	9729 (94) ~ 4
29	2730 (20) 9859 (15h)	9854 (10)	2732 (2) 9851 (10)	2132(1)	$2132(20) q, \kappa$ 9859(6) $q = k i c$
32 32	2002 (100)	2004 (10)	2862 (9)	2000 (22)	$2892(0) q, p, \kappa, i, e$
34	2876(154)	2877 (10)	2875(2)	2875 (25)	2875(10) a k e
35	1	(10)	2901 (2)		2010 (10) y, w, o
. 36	2900 (12)	2905 (8)	2917(2)	2904(23b)	2901 (5b) q, k, e
37	2933 (12)	2942 (10)	2939 (10)	2939 (16)	2938 (10) a, p, q, k, i
38	2961 (10)	2967 (10)	2963 (10)	2964 (10)	2960 (10) q, p, s, k, i, e
			======(==)		,, _, _, _, _, _, _, _, _, _, _,

Tabelle 10. n-Octan.

1500 nach den derzeit vorliegenden verläßlichsten Messungen gegeben. Das Spektrum des Decans wurde außer von Kohlrausch-Köppl¹ neuerlich von Rosenbaum,⁵ jenes von Dodecan außer von Kohlrausch-Köppl¹ neuerlich von Goubeau-Schneider¹³ bearbeitet. Die Unterschiede gegenüber den

Nr.				Mittelwerte		Einzelmessungen			
						Pl. 781, t = 99		Pl. 782, t = 118	
	Δν	i _π	i_{σ}	ę	J	ę	J	Q	J
1	282(7)	5	0	n	12	n	12		
ĝ	762(0)	11/2	ĩ	dn?		м —			
10	814(1)	$\frac{1}{2}$	ĩ						l
12	860 (3)	h .	-		_				
13	878 (3)	} 6	¹ / ₂	р	9	р	9	р	8
14	895 (5)	$7^{1}/_{2}$	1/2	0,48	20	р	14	0.48	23
16	965 (4b)	5	2	0,63	18			0,63	18
17	1027 (2)	<u>ا</u> ب							
18	1045 (3)	j ð	z	р	_		—		
19	1062 (3)		e	0.00	90	1.07	- 00	0.07	
20	1083 (4b)	ſð	0	0,86	30	1,07	29	0,65	30
21	1134 (4)	7 .	3	0,54	22			0,54	22
23	1298 (8)	10	8	0,80	33	0,88	30	0,73	35
26	1436 (7)	16 .	16 ch	0.07	61	0.05	54	0.00	60
27	1457~(7)	10.80	10.80	0,07	01	0,95	94	0,80	08
32	2852~(6)	14 04	· 0	n		l			
33	2861 (7)	14.30	v	Р					
34	2875 (10)	8	0	р	—		—		·
35, 36	2901 (5b)	8	0	р				—	
37	2935 (10)	8	0	р					

Tabelle 11. n-Octan.

6. *n*-Nonan. Köppls¹ Präparat. Aufnahmen: A 318, m. F., t = 111; A 319, o. F., t = 79. Ugd. s., Sp. ms.; n = 43. Die unter I angeführten Ergebnisse sind den von K. K.¹ mitgeteilten unter II gegenübergestellt.

I: $\Delta \nu = 266 (1) e; 409 (0) e; - ; - ; 786 (2) e; 831 (2) e; 846 (2) e;$ II: $\Delta v = 261 (5b); 410 (0); 520 (00); 726 (0); 783 (1);$ 835 (4 dopp); -- ; 890 (2) k, e;965 (0?) e; 1061(2) k, e; 1078(3) k, e;I: 871 (3) e; 977 (1/2); 1012 (0); 1068 (4 dopp.) II: 869 (4) ; 891 (5) ; ; I: 1089 (3) e; 1133 (3) k, e; --; 1300 (6) k, e; 1436 (7) k, e; — ; II: --- ; 1132 (2) ; 1177 (00); 1300 (5b) ; 1370 (0); 1440 (8b) ; I: 1447 (4?) e; 1453 (6) k, e; 2732 (1) k; 2850 (10) q, k, i; 2860 (7) k, i; 2876 (9) p, k; ; 1457 (7b) ; 2727 (4) ; 2855(15);2873 (12) : II: — I: 2900 (8) q, o, k; 2938 (8) q, p, o, k, i; 2962 (7) q, p, k, i. **II**: 2900 (12) ; 2931 (10) ; 2961 (9).

¹³ J. Goubeau und V. v. Schneider, Z. angew. Chem. 53, 531 (1940).

ersten¹ Messungen sind nicht wesentlich. Es hat beinahe den Anschein, als ob auf den bisher beschrittenen üblichen Wegen keine weitere Vertiefung der experimentellen Kenntnisse zu gewinnen wäre.

Bezüglich der Versuche zur theoretischen Verwertung der Spektren sei außer auf *Kohlrausch-Köppl*¹ noch auf *Mecke*¹⁴ sowie auf neuere Arbeiten russischer Autoren^{15,16} verwiesen, welch letztere sich aber bei näherem Studium als wenig originell und praktisch von nur geringem Wert herausstellten. Das gleiche gilt für die Rechnungen von *Parodi*.¹⁷

Bemerkt sei schließlich nur noch, daß sich jetzt, wie Tabelle 2 dartut, dank der vergrößerten Meßgenauigkeit eine bemerkenswerte Konstanz in der Frequenzverteilung des CH-Valenzfrequenzspektrums einstellt.

¹⁵ B. I. Stepanoff, J. physic. Chem. (russ.) 14, 474 (1940); 15, 78 (1941).
 ¹⁶ M. A. Eljaschewitsch, J. physic. Chem. (russ.) 14, 488 (1940).

¹⁷ M. Parodi, C. R. Acad. Sci. Paris 211, 541 (1940);212, 532 (1940); 213, 1005 (1941); 215, 13 (1942); 214 (1942).

¹⁴ R. Mecke, Z. physik. Chem., Abt. B 36, 347 (1937); Z. Physik 104, 291 (1937).